====== AI: Object Detection ====== Evolving documentation of the status quo. git repo: https://git.picalike.corpex-kunden.de/incubator/ai-experiments/-/tree/master/object_detect\\ grapex: /home/picalike/tdog_sandbox/object_detect What we currently use for the fashion detection: https://github.com/svip-lab/HRNet-for-Fashion-Landmark-Estimation.PyTorch\\ pretrained network grapex: /home/picalike/tdog_sandbox/object_detect/fasion/pose_hrnet.pth\\ the network does not output bounding boxes, but fashion landmarks for the dominating product in an image.\\ Links:\\ https://github.com/switchablenorms/DeepFashion2 [data set, not publicly accessible]\\ http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html [data set, outdated, not free]\\ https://github.com/eBay/modanet [model + data only non-commercial use]\\ https://github.com/hrsma2i/dataset-CFPD [dataset, not free]\\ https://openaccess.thecvf.com/content_ICCVW_2019/papers/CVFAD/Sidnev_DeepMark_One-Shot_Clothing_Detection_ICCVW_2019_paper.pdf [paper]\\ To be evaluated, but only bounding persons for persons [COCO classes]:\\ https://github.com/HRNet/HRNet-Object-Detection ===== Service ===== http://sandy.picalike.corpex-kunden.de:8033/docs ===== Bounding Boxes ===== https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/ The SSD network is fast and small, but also only predicts bounding boxes for persons [COCO classes] ===== Fashion Pedia ===== https://fashionpedia.github.io/home/Fashionpedia_download.html\\ https://fashionpedia.github.io/home/Model_and_API.html\\ https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/fashionpedia#checkpoint\\ Keywords: deepfashion dataset